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Adaptive flight control systems hold tremendous promise for maintaining 
the safety of a damaged aircraft and its passengers.  However, most currently 
proposed adaptive control methodologies rely on online learning neural 
networks (OLNNs), which necessarily have the property that the controller is 
changing during the flight.  These changes tend to be highly nonlinear, and 
difficult or impossible to analyze using standard techniques.  In this paper, 
we approach the problem with a variant of compositional verification.  The 
overall system is broken into components.  Undesirable behavior is fed 
backwards through the system.  Components which can be solved using 
formal methods techniques explicitly for the ranges of safe and unsafe input 
bounds are treated as white box components.  The remaining black box 
components are analyzed with heuristic techniques that try to predict a 
range of component inputs that may lead to unsafe behavior.  The 
composition of these component inputs throughout the system leads to 
overall system test vectors that may elucidate the undesirable behavior.   

I. Introduction 

Adaptive flight control systems that utilize online learning neural networks (OLNNs) can 
theoretically allow an aircraft to maintain controllability after catastrophic failure. A prototype 
adaptive control system was successfully flown on the NASA F-15 ACTIVE aircraft using 
technology developed by the NASA Intelligent Flight Control (IFCS) project.  However, the 
usefulness of these control systems is limited by their impermeability to standard validation and 
verification (V&V) techniques.  In real systems, unmodeled dynamics are rife.  Online learning 
neural networks will necessarily adapt based on these unmodeled dynamics, and it is difficult to 
bound the worst-case performance of these changing and highly nonlinear systems.  Even in the 
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cases where the performance of the ideal control system can be bounded, this boundedness is 
usually achieved by making assumptions that limit the ability of the control system to adapt or by 
unrealistically simplifying the dynamics of the aircraft. Traditional verification and validation 
methods based on process (like those used to satisfy DO-178B requirements) are unlikely to 
provide an acceptable guarantee of safety for learning systems, and new validation and 
verification techniques are necessary1-3. Significant efforts towards the validation and 
verification of OLNNs have been made, and a recent survey highlights promising efforts ranging 
from the verification of the neural net design process to theoretical Lyapunov stability proofs that 
take into account uncertainties in the system4.  Recent formal methods advances include 
symbolic bounded model checking using mathematical models of the system5,6.  There has also 
been recent progress made on optimization techniques that can bound the behavior of the system 
given uncertainties7-9.  In general, verification efforts have focused on verification of theoretical 
models; with the exception of runtime monitoring10-14 the actual performance of the control 
system as implemented in code remains a rarely tackled problem.  

The Robust Software Engineering (RSE) group within the Intelligent Systems Division at 
NASA Ames Research Center has developed a suite of techniques that, when used in 
combination, may speed the discovery of adaptive control system failures as implemented in 
flight software15-18. Compositional verification allows the breakdown of the overall system into 
multiple components.  Each component is tackled separately, and the behaviors of the 
components are composed to describe the behavior of the entire system.  Each component can be 
analyzed using any of a plethora of formal methods techniques, including model-checking, 
abstract interpretation, and symbolic execution, with the overall goal of finding component 
inputs that would produce some undesirable output. The range of possible behaviors for the 
entire system is not currently tractable to explicit techniques.  At the system level, we use a 
combination of unsupervised19 and supervised20,21 machine learning techniques in a directed 
Monte Carlo global sensitivity analysis22 to model the behavioral structure of the component and 
to predict the component-level input test vectors.  Simulation-based validation depends on 
heuristics and cannot guarantee that the system is safe; however, validation testing is likely to 
uncover unsafe behaviors not discovered by using formal methods on simplified systems23-25.   

II.   Methodology 
As a prototype for this methodology we are using one of the implementations of the IFCS direct 
adaptive flight control system26-28. The control system we are using was implemented as a 
Mathworks Simulink model and was used as a research-level tool to understand neural networks 
in 2001. The model was not seeded with any known errors for the current paper; all errors 
existed in the model at the beginning of our validation and verification effort.  A high-level flow 
graph is shown in Fig. 1.  The output from the standard proportional-integral-derivative (PID) 
controller for the aircraft is sent to the OLNNs.  The OLNNs compare the PID controller output 
with the output from the linearized plane reference model.  The OLNNs attempt to drive the 
error to zero by augmenting the output from the PID controller before it is fed into the nonlinear 
dynamic inverse.  The actuator model allows the control surfaces of the plane to be individually 
failed at any configuration. This kind of model-based design allows for ease of decomposing the 
overall system into modules, and then autocoding individually modeled blocks into C/C++ code. 
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Figure 1. The IFCS adaptive control 
system. This is the working version of 
the IFCS adaptive control system as 
used in this paper.  The original version 
is modeled in Simulink.  The Monte 
Carlo Filtering techniques described in 
this paper utilize the Simulink model 
directly.  The other verification 
techniques described in this paper are 
performed on the autocoded C/C++ 
from MATLAB’s Real Time Workshop. 

 
 Decomposing the system 
into modules is highly desirable 
from the point of view of 
automated verification – many 
techniques tend toward execution 
time that is exponential in the 

size of the code under test, so the benefits are frequently substantially better than linear. 
Secondly, the techniques that can be applied to a particular subsystem are dependent upon the 
code itself, with linear algorithms being far more amenable to analysis than their nonlinear 
counterparts. In order to maximize fidelity, the formal methods analysis is conducted on the 
actual C/C++ flight code rather than on the Simulink model from which it was generated. 
Decomposition was carried out at the level of the Simulink model, with subsystems rendered in 
embeddable C++ source code separately by Real Time Workshop.  
 An initial, naïve attempt was made to find failures in the system using a Monte Carlo 
Filtering directed technique alone. Monte Carlo Filtering is a type of global sensitivity analysis 
in which we choose the inputs and ranges most likely to lead to some output22.  Most analyses of 
this type are computationally expensive, tend to be limited to relatively small numbers of 
theoretically independent inputs, and also tend to assume that relationships between the inputs 
and outputs are smooth35,36.  The types of problems being solved here involve failures—hence 
they can be non-smooth and of high dimensionality.  To overcome the complications involved in 
finding the correlation coefficients for this sort of problem, we choose in practice to ignore the 
correlation coefficients altogether and use machine learning techniques that sample the space and 
solve the original question directly. 
 For this testing, we dispersed 11 controller parameters: 8 parameters for the PID controller 
and three learning gains within the neural controller.  Each of these continuous controller 
parameters was used in an 3-factorial Monte Carlo[Barrett] experiment with 5 discretized bins 
for each parameter.  The 3-factorial Monte Carlo approach assures that, for discrete variables, 
every possible test vector containing three values is exercised.  Choosing a random value from 
within each bin discretizes continuous values.  This process created 487 test vectors for the initial 
Monte Carlo simulation.   
 In general, we use the system-level requirements to create penalty functions for the Monte 
Carlo Filtering analysis.  Each time a requirement is shown not to hold, the run is marked as a 
‘failure’ for that requirement.  It is possible for an individual run to ‘fail’ more than one 
requirement.  We did not have access to the initial requirements document for the Simulink and 
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Stateflow example used here, and we were blind as to what failures (if any) might exist in the 
code.  The initial test suite was scanned for  

• changes in the sideslip angle, β, greater than 5 degrees between time steps 
• changes in the angle of attack, α, greater than 30 degrees between time steps 
• changes in the absolute height, h, greater than 1000 feet between time steps 
• a roll rate, p, greater than 200 degrees/sec at any time 
• a pitch rate, q, greater than 110 degrees/sec at any time 
• a yaw rate, r, greater than 30 degrees/sec at any time 
• any run in which an output value became infinity or NAN 

during a 10 second simulation with a time step of 0.005 seconds.  The pilot input consisted of 
one set of doublets simultaneously performed in all three axes.  During the initial analysis of the 
results we discovered that slightly over half of the runs had failed, and that these failure cases 
produced NAN values. 
 For the sensitivity analysis step of the Monte Carlo Filtering analysis, we chose to correlate 
the NAN runs with their associated inputs.  All of the runs with NAN values were sorted into 
their own class, and we used a supervised machine learning algorithm known as TAR3, a 
treatment learner[Menzies], to find rules involving a combination of up to 4 variables that 
increased the probability of getting a NAN on a run.  The treatment learner found only one input 
in isolation—a PID roll controller gain, significantly correlated with the increase in probability 
for a NAN run.  The nominal value for this parameter was 0.5, and the variable was dispersed 
between 0.1 and 0.6.  As you can see in Fig. 2, values for this gain between 0.54 and 0.6 
practically guaranteed a failure, with less than 10% of the runs in this range designated as 
successes.  However, NAN failures were distributed outside this range in almost equal 
proportion to successes, and there appears to be no ‘safe’ range throughout the dispersion.  This 
is the best information we can glean from the Monte Carlo Filtering validation testing.  Some 
other technique must be used to determine the actual cause of the NANs. 

 
Figure 2. Treatment Learner Results for the NAN failures. The treatment learner automatically predicts that a 
PID roll controller gain between 0.54 and 0.60 will increase the probability of a NAN failure.  Each data point on 
this plot is an individual run.  Blue circles are successes.  Other colors are outlined by black boxes, and represent 
runs in which output values became NAN.  Failures are colored by a blue-red gradient, with red data points 
corresponding to the runs that failed earliest.  The red lines on the plot illustrate the range selected by the treatment 
learner. 

 We also naïvely attempted to run through an entire simulation using the MCP explicit-state 
model checker16.  To generate the C/C++ code for the simulation, we used MATLAB’s Real-
Time Workshop using the settings for embedded code and making sure that each block within 
the Simulink model was written as its own reusable function. MCP is capable of directly 
checking C and C++ code without prior translation or model extraction.  
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 Model checkers are often not recommended for general use in control system verification 
because of the state-explosion problem—each state must be held in memory and, for large, 
continuous systems, the model checker is likely to run out of memory before the program has 
finished executing.  When explicit model checkers have been used for control system 
verification, they are usually limited to standard PID controllers that are not in a loop with the 
plant and have been most successful when the system is abstracted30.  The MCP model checker 
ran out of memory the first time through the simulation loop, during the convergence iterations 
for the neural network learning.  As a sanity check, the simulation was repeated with only the 
PID controllers in the loop—the neural networks were removed.  The Monte Carlo testing was 
repeated with the same test vectors and there were no NAN failures.  During this attempt, MCP 
managed to execute several times around the loop before running out of memory. 
 Our next attempt used the compositional structure of the code imposed by the Simulink 
model to divide the work between the Monte Carlo Filtering validation testing and the explicit-
state model checker. Given bounded inputs from other techniques, model checking is an 
effective way to efficiently generate explicit counterexamples that make it very clear why a 
particular piece of code has failed.  The treatment learner’s choice of the PID roll controller gain 
as the strongest correlation with the NANs, along with the fact that there were no NAN failures 
when the neural networks were removed from the simulation, suggested that the problem lay 
within the neural network component augmenting the roll command.  We instrumented the 
inputs and the outputs to the roll neural network controller (shown in Fig. 3) and monitored the 
Simulink simulation for the outputs becoming NAN. We quickly found that there was a time step 
in which Uad1 became NAN even when all of the input variables were real values.  This input 
test vector became the input values to the Roll_nn C++ function during MCP execution. 
 

 
  
Figure 3. A Close-up of the Roll Controller Portion of the 
Simulink Monitor. The input variables to Roll_nn—
sensors_in (a bus variable), roll_ch_in (a bus variable), 
U_p_ad1 (a continuous value), nn_gains_in (a bus 
variable)—along with the two continuous output variables, 
were all monitored during Simulink execution.  An input test 
vector of all real numbers producing a output Uad1 value of 
NAN was used as an input to the model checker. 

 
 
 
 

 

 
 

III. Results 
The autogenerated code from the roll neural network was fed into the model checker MCP.  

The neural network code in isolation was small enough that MCP could analyze it to failure 
without running out of memory.  MCP has been modified to be able to detect NANs in the 
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floating point values and report the 
trace of variables that led to the NAN.  
A snippet of the results from the model 
checker are shown in Fig. 4. 

The autogenerated SIMULINK code 
is well-annotated, as shown in Fig. 5.  It 

is easy, using the comments, to trace the autogenerated code back to the original SIMULINK 
model.  In this case, a value was not checked for its size before being fed to an exponential 
function.  Placing a limit on the size of the value before the exponential eliminated the NAN 
results.      

 
Figure 5. Selected Autogenerated 
Code from Real Time Workshop. 
The code is well-annotated, with 
the comments directing the reader 
back to the blocks in the original 
SIMULINK model. 
. 

It is important to note that 
this work in this paper made 
no attempt to discover 
whether the flaw was in the 
original design of the 
controller or in the 
implementation of the control 

design.  The authors had no knowledge of the original requirements the designers had in mind.  
Much more could have been done if those requirements had existed.  However, a NAN result in 
a controller could have been a fatal flaw had it been implemented on an aircraft.  The process 
described here is a highly automated way to discover these flaws. 

IV. Conclusion 
Model-based design is gaining traction in the space and aviation industries.  Among its many 
advantages it gives the validation and verification practitioner information about the ways that 
the programmers decomposed the design.  This information can be used in divide-and-conquer 
compositional verification techniques where many tools can be used in concert to provide 
automatic verification. 
 The test example used here was research-level code.  With very little information about the 
original intended requirements for the code, we used a series of automatic techniques in order to 
uncover a serious bug.  In particular, we used a heuristic directed testing technique in order to 
achieve the necessary scalability for the code, and then a formal methods technique in order to 

Figure 4. Selected Results from the MCP 
model checker. Using the input test vector of 
all real numbers from the SIMULINK 
instrumentation, the MCP model checker was 
able to provide a trace for the NAN result. 
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order to get an explicit trace of the error.  If we had received more information about the 
intended requirements of the control system design (MATLAB allows you to specify 
requirements with the model which will be autocoded as comments into the RTW code for code 
traceability purposes) there are two more formal methods techniques which would have been 
promising to use: 

• Partial evaluation/Symbolic Execution. This approach allows certain functions (with 
bounded loops, limited use of pointers and strictly linear arithmetic operations) to be 
transformed into satisfiability modulo theorem (SMT) problems, which allow solvers 
such as Yices34 to be used to generate test cases for arbitrarily chosen outputs.  

• Abstract Interpretation. This approach31-33 allows some nonlinear functions to be safely  
approximated, making it possible to derive useful information about their behavior. 
Though this approach can generate false positives, when performed correctly it can never 
yield false negatives – consequentially, if code is shown to be correct by this method, this 
is a mathematically sound result.  

As formal methods techniques become easier for the everyday practitioner to use, it is important 
to counteract the impression that formal verification for control systems is too expensive and 
difficult. 
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